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Abstract — Remote visualization is an enabling technology aiming to resolve the barrier of physical distance. While many researchers
have developed innovative algorithms for remote visualization, previous work has focused little on systematically investigating optimal
configurations of remote visualization architectures. In this paper, we study caching and prefetching, an important aspect of such
architecture design, in order to optimize the fetch time in a remote visualization system. Unlike a processor cache or web cache,
caching for remote visualization is unique and complex. Through actual experimentation and numerical simulation, we have discov-
ered ways to systematically evaluate and search for optimal configurations of remote visualization caches under various scenarios,
such as different network speeds, sizes of data for user requests, prefetch schemes, cache depletion schemes, etc. We have also
designed a practical infrastructure software to adaptively optimize the caching architecture of general remote visualization systems,
when a different application is started or the network condition varies. The lower bound of achievable latency discovered with our
approach can aid the design of remote visualization algorithms and the selection of suitable network layouts for a remote visualization
system.

Index Terms — Remote visualization, distributed visualization, performance analysis, caching.

F

1 INTRODUCTION

Remote visualization enables users to access visualiza-
tion data stored at remote and dispersed locations without
making complete local replicas.

A primary performance measure of remote visualiza-
tion is thelatencyincurred during user interaction. The
absolute latencyis measured from the time a user request
is generated, e.g. choosing a new view angle or a new iso-
value, until the request is fulfilled.Reducing the latency
is a challenging problem in remote visualization.

Latency hiding techniques have recently become a ma-
jor approach to addressing this problem. In a nutshell,
they aim to trade temporary visual quality for a steadily
low response time, for instance, by intelligently using ap-
proximations of the requested data while the data is still
being transmitted. In this case, user-perceived latency can
be greatly reduced with the same absolute latency.

Reducing the absolute latencyin remote visualization,
if addressed properly, would invariably improve the over-
all quality of the user’s experience. When latency hid-
ing methods are not employed, then the incurred latency
directly impacts the rate of client-side user interaction.
With latency hiding techniques, a lower absolute latency
would require fewer approximations, leading to better vi-
sual quality and accuracy during a visualization session.

A general strategy to reduce absolute latency is to
prefetch data and usecaching, similar to the use of proces-
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sor and web caches. The caching mechanisms needed by
remote visualization, however, are unique in several im-
portant ways (more details in Section 2). From an archi-
tectural design perspective, we are interested in the ques-
tion of whether it is possible to systematically evaluate
and search for optimal cache configurations for remote vi-
sualization under various scenarios, such as different net-
work speeds, sizes of user requested data, rates of user
interaction, and cache depletion schemes. If the answer
is yes, we would like to leverage the knowledge learned
to design a practical scheme for adaptively optimizing the
caching architecture of general remote visualization sys-
tems whenever a new application is started or the overall
environment adapts over time. To the best of our knowl-
edge, this topic has not been a previous focus in the field.

In this paper, we base our study on actual experimenta-
tion as well as numerical simulation. First, we developed
a network-aware caching software, calledinCache, that
runs on most major flavors of Linux. With commands
sent through a TCP socket at runtime, each inCache pro-
cess running on an independent network node can be indi-
vidually controlled to switch to new cache configurations.
Such a runtime adaptiveness enabled us to experiment
with actual real-world applications in search of optimal
cache configurations. Second, based on lessons learned
through experiments, we further developed an efficient
method of numerical simulation to discover optimized
cache configurations for a remote visualization system.
Although experiments often take hours to finish, numeri-
cal simulation using a single CPU completes with compa-
rable results with sub-second efficiency. Hence, a config-
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uration with minimized fetch time under current network
situation can be instantly determined and applied. From
an application developer’s perspective, a chain of inCache
nodes orchestrated by numerical simulation could serve as
a black box of prefetching and caching that transparently
adapts to temporal changes in the network. As we will
show in Section 6 Results , near optimal cache configura-
tions that maximize utilization of network bandwidth can
be discovered using our approach.

Another use of our findings is also interesting. That
is, to attack the problem of designing latency hiding al-
gorithms from a “negative angle.” By finding the lower
bound of absolute latency for remote visualization on a
network, for any specific combination of targeted user
request rate and average fetch size, one can predict that
some algorithm will fail to hide latency effects from the
user because it is impossible to receive the needed updates
fast enough, while for others, there is still room to adapt
for more functionality and better quality. In turn, by fix-
ing the algorithm and user requirements, one can evaluate
various ways to lay out a system on the network, and se-
lect the layout most probable to meet the requirements.
For example, as shown in Section 6.1, some applications
remain interactive over a wireless network, while others
cannot. All such predictions can be performed without
actually building the remote visualization system.

In the remainder of the paper, we discuss related work
in Section 2. In Section 3, we describe our generalization
of caching in remote visualization using a model of incre-
mental updates. Our study of the overall problem space
and the framework to search for an optimal configuration
is presented in Sections 4 and 5, respectively. We present
our results in Section 6 and then conclude with a discus-
sion of future work in Section 7.

2 BACKGROUND

Over the years, the visualization community has explored
both algorithmic and architectural approaches to design
remote visualization systems.

In order to design visualization algorithms suitable for
use in remote settings, researchers have focused on low-
ering system latency by (i) reducing the amount of data
needed per request to a minimum using methods based
on view-dependence, level-of-detail, and compression [6,
9, 12, 13, 16, 17], or by (ii) integrating the latest graphics
hardware into remote visualization systems [7,8,20].

Obviously, it would be ideal to have a remote visu-
alization algorithm with a minimal level of absolute la-
tency. When that is not feasible, however, smooth user
interactions might still be achievable using latency-hiding
techniques, mainly based on alternative representations of

a visualization. For instance, texture mapped geometry
meshes can be used to faithfully approximate volume ren-
dered results under a small range of viewing angles [2,15].
Using such approximations of the requested data while
the data is still being transmitted, user-perceived latency
could sometimes be negligible. But if a user moves out-
side the targeted range too soon, user-perceived visual
quality would then severely suffer. Indeed, latency-hiding
as an algorithmic approach introduces a tradeoff between
user-perceived visual quality and user-perceived latency.

Besides algorithmic approaches, general architectural
aspects of remote visualization are also important venues
of research. Of the several important issues to consider in
architectural design, we would like to focus on the use of
caching in general remote visualization systems. One par-
ticular area of study is how optimal cache configurations
for all networked nodes in a remote visualization system
can be systematically evaluated and discovered.

Caching, as a general concept, has been widely applied
throughout computer science. We should then consider
previous methods designed to optimize cache configura-
tions for other notable applications, especially those used
to optimize processor cache [4, 10] and web cache [11].
We find optimizing caches for remote visualization dif-
ferent from those two fields in several aspects. In particu-
lar, it differs in the nature of the problem space, the goals
of optimization, and the resulting choice of the search
method for seeking an optimal solution.

To optimize a processor cache, the problem space is
quite uniform. All cache lines are of the same size, and
identified by addresses of a constant length (e.g. 32 bits).
The total number of possible cache configurations is also
rather limited (for instance, 4-way associative vs. 8-way
associative, under a few candidate cache-line sizes). Since
hardware design does not allow dynamic variations, run-
time optimization was not part of the goal. For these rea-
sons, exhaustive search was employed to optimize proces-
sor cache configurations [4,10].

We also compare our problem to that of web
caching [11]. The focus of web caching is to create an
affordable “mirror”, or proxy, that provides fast access
to frequently used documents while keeping data secure
and fresh (i.e. updated). Also, filtering may be used
to further improve performance, treating very large and
very small documents differently depending on the web
caching goals. A good web cache configuration is one
that maximizes hit rate while serving a large number of
dynamic users. The size of the problem space is not typi-
cally large. In terms of optimization, previous researchers
have attempted methods such as linear programming, with
an underlying assumption of a linear problem space [11].
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It is also uncommon for a web cache to adapt its configu-
ration frequently (e.g. every five seconds).

Caching in remote visualization is unique when com-
pared to processor and web caching. Remote visual-
ization caches are commonly designed to provide low
latency interactivity to one or just a few active users.
Remote visualization is data intensive, and hence needs
caches to adapt to changing network bandwidth and user
request rates, etc. Exacerbating the problem is a need to
manage data fetches of highly varying sizes indexed by
many variables. The popular use of multiple networked
nodes for dispersed tasks further compounds the complex-
ity. Also, our problem space has no linear structures to
leverage (Section 4). As a result, we cannot directly ap-
ply optimization methods of processor or web caching.

Also worth noting is system configuration optimization
in distributed virtual reality [21], with datasets replicated
on all participating computers. The network is not the bot-
tleneck due to minimal runtime communication (transmit-
ting only control messages and highly compressed video
streams). It is sufficient to solely optimize resource uti-
lization on each individual PC. The optimization space is
often small enough for using exhaustive search.

Finally, previous researchers have also dedicated much
pioneering work towards other architectural issues, such
as advanced networking protocols, scalable infrastructure
of distributed systems, etc. [1,3,6]. To this end, our meth-
ods herein extend along an orthogonal direction and can
be combined with existing architectural and algorithmic
designs to obtain an optimized system as a whole.

3 A MULTI-LAYER CACHING MODEL

Given the great diversity among applications of remote
visualization, we need a unifying model of caching for
remote visualization to systematically study optimization
methods for cache configurations. A robust software in-
frastructure implementing the model is also required so
actual experiments with different applications can be con-
ducted under a consistent framework. Accordingly, we
first describe our generalizing concept based on “incre-
mental”, then the overall configuration of a cache in re-
mote visualization. The general characteristics and opti-
mization of the problem space are reserved for Section 4.

In Figure 1a, we illustrate a general setup of remote
visualization applications. By choosing different types of
connections between functional nodes, one could come
to a number of possible setups. For example, a popular
instance is shown in Figure 1b, a cache node is co-located
with the client and the server, with a wide-area network
separating them. The two cache nodes are referred to as
Layer One (L1) and Layer Two (L2) caches.

Fig. 1. A general model of caches based on the concept of incremen-
tal. (a) A conventional setup of remote visualization applications. (b) A
common instance of how a remote visualization application is laid out.

3.1 Incremental

To generalize requested information over different appli-
cations of remote visualization, we define anincremen-
tal as the portion of data, be it intermediate or raw data,
to be delivered across the network to the client upon re-
quest. For instance, in [2, 15], an incremental is com-
posed of the texture and geometry that are constructed for
each new view angle and depth range. Hence, it is both
view-dependent and depth-dependent. In [12], a vol-
ume rendered image goes through wavelet compression
before being transmitted across a dedicated ATM link.
The client then receives the compressed image for each
view as a new incremental update. When extracting view-
dependent iso-surfaces, significant accelerations could be
gained by focusing computing resources on extracting tri-
angles that are appearing at each new view angle and/or
new depth [9,13,14]. In this case, incrementals consist of
those newly extracted triangles. Previous researchers have
also proposed to package compressed data on a coarse
level of granularity into larger groups, with each incre-
mental corresponding to a set of similar views [6]. To
summarize, applications of remote visualization, in gen-
eral, pull incrementals through a chain of network nodes
(k levels of cache), with each acting as a server.

In all cases, an incremental is identifiable by acom-
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pound keyof an arbitrary number of indices, each cor-
responding to a parameter in a user request, e.g. time
step, view angle, iso-value, level-of-detail, etc. A com-
pound key can then be encoded as a string by concate-
nating the name of the dataset with the list of indices.
With keys represented as strings, we can use classic string
methods to conveniently hash and manage incrementals of
an arbitrary remote visualization application. Moreover,
prefetching and deletion schemes can also be succinctly
specified with efficient and general string operations.

With the concept of incremental, it is then possible to
implement one common infrastructure to support caching
needs of various remote visualization applications.

3.2 Cache Configuration

In our model, each cache node is independently con-
trolled. Maximum size of a cache specifies the thresh-
old before deletion must take place. On all cache nodes,
deletion is performed using least recently used (LRU).
The amount of incrementals removed with each deletion
is controlled by an adjustable parameter.

Due to the large index space, we find it hard to orga-
nize incrementals using multi-way associative schemes
like those in processor cache. Instead, we feed the key
and incremental into a general hash function and maintain
all incrementals in a hash table. Similarly, while proces-
sor caches usually prefetch in units of cache line, such a
scheme is too simple to be used in remote visualization.
We instead leverage the concept of neighborhood.

Suppose a dataset nameddn is indexed bym variables,
i.e. var1, var2, ..., varm. The neighborhood,S, of an in-
crementalin with a key,Key, can be specified as:

Key(in) = dn.var1.var2. . . . .varm.

S(in) = {s : Key(s) = dn.var1±∆1.var2±∆2. . . . .varm±∆m.}

The∆’s define the size of the neighborhood around in-
crementalin. Since all prefetches are done in units of
neighborhood, we refer to those∆’s as prefetch incre-
ments (Pinc), with each Pinc controlling the range of an
individual dimension (i.e. variable) of the dataset. By set-
ting constrasting Pinc values for different dimensions, the
flexibility to prefetch more aggressively in a certain di-
mension is offered. However, all incrementals in the same
prefetch neighborhood are treated with the same priority.

Here we make a special note. In real-world scenarios,
deletion and prefetch policies would likely need to be ap-
plication specific. In this work, the deletion and prefetch
policies are independent of the framework. As long as
such policies can be procedurally described, our frame-
work can invariably leverage them. Our current deletion
policy based on LRU and prefetch policy based on neigh-

borhoods are intuitive to define and use. The observed
results (Section 6) seem reasonable with our selection.

4 THE PROBLEM SPACE

In an attempt to design an approach to cache optimiza-
tion, we study average fetch times and the overall cache
configuration space. In particular, we observe fetch times
resulting from configurations randomly selected in the en-
tire problem space. This is done to explore the possibility
of an analytical approach for finding good cache config-
urations. We show that this is a virtual impossibility and
discuss numerical minimization as an alternative.

4.1 The Target Function: F(X1, ...,Xk)

The specific aim of this work is to design a systematic
approach to discover efficient (optimal or at least close to
optimal) configurations of multi-layer caches in a remote
visualization system.

Due to the dynamic nature of human interaction on the
client-side, we can only take averages of fetch time,F ,
over a number of user requests and minimize that. The
great variety of visualization applications also dictates
such optimization be done in a case by case manner.

The input ofF consists ofXjs, with eachX composed
of the entire set of configuration parameters for one of
the k caches. Hence, we haveF(X1, ...,Xk) as the target
function, where the lower the function value the better.
In addition, as network traffic varies during a period of
time, e.g. different hours during a work day, the value
of F(X1, ...,Xk) would vary as well. The minimization
process ofF(X1, ...,Xk) would then need to be re-done.
Fortunately, as we will show in Section 6, this process
completes with sub-second efficiency. Thus, although
F(X1, ...,Xk) is time-dependent, we do not need to include
time as an input ofF for the purpose of optimization.

4.2 Configuration Space

Supported by inCache (Section 5) and using the layout
illustrated in Figure 1b, we tested three applications: dy-
namic streamings of (i) compressed images volume ren-
dered for different view angles, (ii) iso-surfaces for a set
of iso-values and time-steps, and (iii) streamlines for in-
teractively specified seed locations (in both spatial and
temporal coordinates).

Each level of cache,L1 or L2, is controlled by an in-
dependent set of configuration parameters: cache size
defined in number of bytes, and sizes of deletion and
prefetch (both defined in number of incrementals). Here
we use the same prefetch size on all indices of the dataset,
i.e. treating all indices with the same priority. Thus, in-
stead of keeping multiple prefetch sizes,∆s, we just main-
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Fig. 2. Wall clock time plots of user requests under approximately 25%
of the 200 configurations.

tain one universal∆ value. Therefore, with two levels of
caches,L1 andL2, there are a total of 6 configuration pa-
rameters (3 for each cache). Note, however, the Pinc pa-
rameters are treated individually in actual optimizations.

The 6-dimensional configuration space is overwhelm-
ing to exhaustively search. Since we just need a quali-
tative sense of the overall configuration space, we start
by randomly selecting 200 cache configurations, out of
the 6-dimensional space, for each application. The cache
sizes were distributed within the range from 213 = 8K
bytes to 227 = 128M bytes, to match real-world scenar-
ios. Deletions were chosen as a number of incrementals
representing a random percentage of cache size. The Pinc
values were picked as random numbers between 0 and 6,
since anything larger would cause prefetching to become
too costly. With each configuration, we run a scripted se-
quence of 60 random user requests. There is a one-second
pause after a set number of requests have been answered
to “mimic” a repeatable set of user interactions. The pause
occurs after 3, 1 and 30 requests for applications (i), (ii)
and (iii), respectively.

Following an initial start-up cost, efficiency with the
subsequent requests should reflect caching performance.
Using the recorded times of the last 55 requests, we an-
alyze: (i) the effects of cache misses on the wall-clock
time, and the distributions of (ii) average fetch time and
(iii) “good” configurations in the configuration space. In-
terestingly, all three applications produced similar results.
The results from application (i) follow.

In Figure 2, we plot the wall-clock times when each of
the last 55 requests was fulfilled. Each curve in Figure 2
corresponds to a different configuration. To remove vi-

Fig. 3. Histogram distribution of average fetch time (in logarithmic
scale), recorded from 200 random L1-L2 configurations of distributed
caches, recorded when streaming a database of volume rendered im-
ages of a time-varying simulation dataset.

sual cluttering, we show only approximately 25% of all
curves. Cache hits and misses are apparent from observ-
ing the stair-stepping effects in the figure, with each miss
showing a noticeable shift in the graph. Lower overall
slope corresponds to better configurations. This qualita-
tive characteristic is present with all three applications.

We also construct a histogram of average fetch time
to show the corresponding distribution. The histogram
shown in Figure 3 has the horizontal axis, the time, orga-
nized in logarithmic scale. In other words, the bins are
exponentially sized. As shown, the average fetch times
span across four orders of magnitude, with the first con-
taining the best 11%.

After seeing histograms similar to the one in Figure 3
for each application, we are convinced that finding a good
(not even optimal) configuration is significant. A random
cache configuration, or one manually chosen or “twid-
dled” will not guarantee efficiency, whereas a systematic
way of searching for such a configuration is desirable.

To design a proper search method, a qualitative under-
standing of the overall problem space would be very help-
ful. We developed the x-y plots of the top 10% vs. bottom
50% of configurations in Figure 4 to show, for instance,
the correlation between the sizes ofL1 vs. L2 caches.

Some well-known patterns can be observed, such asL1

cache should not prefetch more thanL2 cache. L1 and
L2 should not be approximately the same size, and either
needs to be large but not both. Aside from those, there
appears to be little commonalities present in all “good”
configurations, which are also highly dispersed through-
out the entire configuration space.

To rule out the possibility of some higher-order rela-
tionship among the parameters in“good” configurations,
we resorted to Principal Component Analysis (PCA) as
well as non-linear decision-tree classification. With PCA-
analysis, we found four out of six significant eigenvec-
tors in the eigen-space, i.e. the 6-dimensional space can
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Fig. 4. A qualitative view of configuration parameter space distribution, using x-y plots of top 10% vs. bottom 50% configurations, in the application
that dynamically streams compressed volume rendered images.

be reduced to a 4-dimensional space, preserving 90% of
variability among the data points. While this reduction
is helpful, the actual problem space is even larger due
to multiple∆s to handle. Hence the dimension reduction
still generates a rather complicated space. With decision-
tree classification, we resorted to the mature body of
work [19] used in data mining. The precision of deter-
mining whether a configuration is good consistently ranks
below 70%, with a sensitivity as low as 39%. In short, we
could not find any reliable structures in the space of con-
figuration parameters distinguishing good from bad.

4.3 Numerical Minimization

Not knowing the analytical form ofF(X1, ...,Xk), we can-
not solve for extremal points in the N-dimensional do-
main. Given the immersed nature of good and bad solu-
tions (Figure 4), we decided to use numerical minimiza-
tion as a heuristic to iteratively search for a better setting.

By abstracting all cache parameters from all levels of
cache as anN-dimensional vector, our target function

F(X1, ...,Xk) becomesf : RN → R. Supposingn is the
total number of parameters to configure a cache, andk is
the number of levels of cache, thenN is equal ton× k.
We used two alternative procedural numerical minimiza-
tion algorithms: the gradient based (i) Steepest Descent
and (ii) Conjugate Gradient.

While Steepest Descent is the most straightforward
method of numerical minimization, Conjugate Gradient
is more theoretically sophisticated and may yield better
results. As we will show in Section 6, between the two
methods, one does not always outperform the other. It is
of particular value to use both methods at run time and
return the best configuration for more robustness.

We implemented both methods, using finite differences
to approximate gradient. Specifically, we modify one of
theN parameters while fixing all the otherN−1 param-
eters. Since there are two possible directions of variation
with each of theN parameters, a reliable estimation of
gradient requires 2N measurements of fetch time. Such
anO(N) complexity caused experiments to take hours to
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complete, and prompted a need for simulation-based op-
timization. A calculation of the Hessian of this function
would costO(N2) measurements of fetch time, rendering
Newton’s Method and many of its variations prohibitively
expensive for this problem.

The direction of Steepest Descent is simply the neg-
ative of the gradient. Conjugate Gradient calculates a
different direction, based on the gradient, that in prac-
tice tends to more accurately reflect the actual minimum.
The first iteration of Conjugate Gradient is equivalent to
Steepest Descent. Typically for Conjugate Gradient, a
step size search is required, but because of the inherent
discrete nature of our problem, it is not needed for our cal-
culations. Also, many linesearch algorithms require addi-
tional gradient calculations; even the simplest of these at
least requires extra function evaluations [5] . Addition-
ally, Conjugate Gradient is known to sometimes give bad
directions, so an occasional restart is needed. We im-
plemented the Polak-Ribiere version of Conjugate Gra-
dient [18], which has an elegant fix of this shortcoming.

The optimization (numerical minimization) is per-
formed independently when an application is started. We
begin with an initial configuration and measure fetch
times either through actual experiments (Section 5.3.1) or
via simulation (Section 5.3.2). We then use these mea-
surements to determine the direction of minimization.

Note that we use numerical minimization merely as a
heuristic search for a better solution. Ideally we would
prefer to find a global minimum, but doing so is gen-
erally difficult and time consuming. Incoming user re-
quests, network instability, and variable sized blocks of
data are inherent in all remote visualization systems. Con-
sequently, there is a small likelihood of a globally opti-
mal solution remaining optimal for long enough to justify
finding one. Therefore, we opt for finding any better so-
lution in a short amount of time, i.e. within one second.

The properties off , that numerical optimization rou-
tines require, are used to bound approximations and guar-
antee convergence. However, our criterion for conver-
gence is simply whether the next configuration yields a
slower fetch time. We continue as long as the fetch time
is faster than the previous iteration. Indeed, we find that
the direction returned by either Steepest Descent or Con-
jugate Gradient, and a move from one cache configuration
to another in that direction generally reduces our average
fetch time. Finally, we recognize that we have hardly tried
all possible methods of numerical minimization. More
sophisticated algorithms could potentially lead to better
numerical performance. As we will show in the Results
section, our overall framework is already effective with-
out utilizing more complicated methods.

5 THE INCACHE SYSTEM AND OPTIMIZATION

5.1 The inCache Infrastructure

5.1.1 Design Concepts

While designing inCache, we hoped to develop a suffi-
cient infrastructure for investigating the problem of multi-
level cache optimization, and at the same time have the
resulting package be of value for practical use.

Each cache would hold all incrementals in a contiguous
repository, indexed through a hash table. In the meantime,
a separate priority queue is used to maintain the LRU or-
der of all incrementals. Accordingly, the priority queue is
keyed on the last time each incremental is accessed. All
reads/writes in the hash table takeO(1) time, while insert-
ing/deleting an incremental from the heap takesO(logM),
whereM is the total number of incrementals in a cache.

Another issue that inCache handles is the need to fre-
quently change how a cache is configured. With each
inCache being an independent process running on a net-
worked node, there are three interfaces to reconfigure in-
Cache: (i) manual input through the inCache process’
console prompt, (ii) periodic update from a textual con-
figuration file on local disk (a mutable option), or (iii)
dynamic alteration through a socket. When an inCache
process is directed to reduce its size, it deletes present in-
crementals in LRU order until the request is met. How-
ever, when a larger size is given, the inCache process will
cap that value by the size of its main memory.

5.1.2 The inCache Nodes

Our overall architecture follows the illustration of Fig-
ure 1a. The inCache package solely provides the func-
tionality of multi-level caching. Server and client are the
responsibility of application developers.

Every inCache node runs an independent process, act-
ing both as a producer and a consumer. (i) As a consumer,
it takes in data by prefetching neighborhoods of incremen-
tals from a lower-level cache or directly from the server.
Since all incrementals are identified by string-type keys,
an inCache process makes no distinction among datasets
or applications. (ii) As a producer, an inCache process
answers requests from higher level caches or the client.
If it does not hold the requested incremental, i.e. a cache
miss, it makes a prefetch request to a lower-level cache,
and waits for the prefetch to arrive before answering the
original request. This chain of requests ends at the re-
mote server, where all requests result in a hit. As a re-
quest travels from a client to a remote server, each level
of cache usually receives and holds a larger subset of the
data, illustrated in Figure 1b with an increasing number
of triangles beside each inCache node.
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Table 1. The inCache Interface.
Client API

connectcache(hostname, port, type)

client retrieve(datasetname, indices[], bufferout, cachefd)

client reconfig(configlines[], cachefd)

Server API

connectcache(hostname, port, type)

get lookupinfo(datasetname, indices[], increments[], cachefd)

serverinsert(datasetname, indices[], dataitem, cachefd)

serverinvalid request(datasetname, indices[], cachefd)

All connections to inCache processes are through sock-
ets. If the targeted inCache process actually runs on the
same host as the consumer process, then the communica-
tion goes through a very low overhead socket loopback.
When that is not the case, data transmission is then in
TCP/IP. The user can benefit from this design by choos-
ing the best node layout for a specific network, chaining
additional nodes until the final data server is connected.

A final consideration is to transmit requests and data
as quickly as possible, so separate threads within each
inCache process are used to handle incoming incremen-
tal requests from its client and incoming incremental data
from its server. Thread control and mutex locks became
the most demanding task to achieve robustness as well as
efficiency during inCache development. However, using
threads enabled us to handle multiple clients per node, and
hence, several different users may simultaneously access
the inCache system. In this respect, every inCache node
works very much like a web server.

5.1.3 The External Interface

While the intrinsics of the inCache infrastructure are
rather involved, it is sufficient for application developers
or users to deal solely with a compact external interface,
as shown in Table 1, where the functions are grouped into
client API and server API. The locations of the two APIs
in the software architecture is also illustrated in Figure 1a.
The underlying operations within an entire group of in-
Cache nodes, including prefetch and cache deletion, etc.,
are transparent to users.

To chain inCache nodes, a client can connect to its
producer cache node through a given socket’s address
by the connectcache() function. With the established
connection, a client makes an incremental request with
client retrieve() and waits for the data to be returned. The
producer inCache node will then immediately reply with
the data on a hit, or translate the request into a prefetch
and send it to the next linked node on a miss.

The lower node could be another cache or the ac-

Fig. 5. WAN bandwidth measured for different message sizes.

tual data server. The server will respond to this re-
quest by retrieving the incremental lookup information
via get lookupinfo() and then determining the availabil-
ity of the data. Once the data is ready, the server can
insert the information back into the inCache node with
serverinsert(), or if the lookup returns no match, the
server will respond with an invalid incremental message
with serverinvalid request(). The clientreconfig() func-
tion allows the consumer client to configure any number
of layers by specifying the configurations in a chain of
strings that propagate down.

5.2 Testing Framework

To comprehensively study the performance aspects of in-
Cache, we have designed the following testing frame-
work. We have tested inCache with multiple applications
under a variety of network environments.

5.2.1 Network Layout

For our model (Figure 1a), remote streaming using a
client, a server, andL1 andL2 caches, is the most practical.
The standard components of any remote system, a server
and a client, represent the end layers. The server acts as
the compute layer responsible for the storage of and the
access to pre-computed visualization data. The middle
layers consist ofL1 andL2 caches joining the server and
client. In all tests, we use the standard Internet as the
wide-area network. Figure 5 illustrates the typical band-
widths we obtained for varying network message sizes.
Noting that our framework is independent of the type of
network used, better system performance could be possi-
ble if quality-of-service is employed.

A cluster located in North Carolina State University
(NCSU) was used for the server machine, which trans-
fered data to the client located at the University of Ten-
nessee. Experimental tests were also conducted with the
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remote server running on a workstation at the Ohio State
University (OSU), but due to having nearly identitical
network bandwidth, the tests results were very similar.
Hence, herein we only show results obtained using the
NCSU cluster as the server.

In total, we evaluated 4 different network layouts. In
the first two layouts, the client resides on a 100Mbps Eth-
ernet LAN, whereas in the last two layouts the client is
accessed via Internet over an 11Mbps wireless LAN. In
all cases, the WAN separates the client from the server.

• Layout 1 hasL1 on the same ethernet LAN as the
client andL2 on the same LAN as the server, but not
on the same machines.L1 andL2 handle all network
transmission on the WAN connection.

• Layout 2 places bothL1 andL2 caches on the client
side (i.e. no cache on the server side).L1 is on the
same machine as the client.L2 cache on the same
ethernet LAN as the client.L2 and the server handle
all communication across the WAN. This layout was
shown to be useful in [6].

• Layout 3 is similar to Layout 1, with a wireless net-
work replacing the ethernet LAN on client side. The
WAN connection remains unchanged.

• Layout 4 is similar to Layout 2, with a wireless net-
work replacing the ethernet LAN on client side. The
WAN connection remains unchanged.

5.2.2 Modeling User Requests

Suppose there arem indices in a dataset, with each in-
dex in the compound key beingKeyj . We assume that a
user would modify any given compound key in consecu-
tive steps by issuing a new request with each modification.
We further assume an average user will take one step of
unit size in a randomly chosen direction,j. Accordingly,
our random step generator begins with an initialKeyand
randomly picks one of them indices,Keyj to increment
or decrement (with an equal probability) by a unit step.

Using such a procedural user model, we can conve-
niently control the user behavior by setting a different rate
of user input. Between experiments we can use the same
random sequence of user requests to measure differences
in fetch time in a controlled manner.

If a user is more likely to change a parameter than other
parameters, we can model this behavior by setting differ-
ent probabilities for eachKeyj to be chosen for next move.
As an example, if a user engages in browsing a hierarchi-
cally organized data at a low level-of-detail (LoD), user
requests can be generated with a fixed LoD index, while
all other indices are freely variable.

The inCache system treats all requests the same. Over
a sequence of user inputs, it is for the minimization code
to discover that, for example, an index like time should
incur larger prefetch (high Pinc value) or an index such as
LoD should have a Pinc value of 0. In this way specific
application requirements are implicitly handled.

5.2.3 Testing Applications

In our tests, the visualization results to be streamed across
the network have been pre-computed. This is reasonable
for the scope of this paper, because the time to compute
an incremental on the fly could be treated as a part of the
general network latency. The same inCache model still
applies. Our tests include four applications, chosen to re-
flect incrementals of constant vs. varying and small vs.
large sizes, and different types of compound keys.

• Application 1 streams a set of streamlines of equal
length, computed from the well-known tornado
dataset. There are 463 separate streamlines, with
each being 2.4 KB in size, indexed by the coordinate
of the seed of each streamline. The client request rate
is 30 requests/second.

• Application 2 involves a database of volume ren-
dered images of a 30 time-step simulation data. The
images are 512×512 in resolution, indexed by time
step and two spherical coordinates (72×60) describ-
ing the view angle. With Z-lib compression, image
sizes average 85KB, ranging from 70KB to 110KB.
The simulated client makes 3 requests/second.

• Applications 3 and 4 deal with a set of iso-surfaces
extracted at 11 different iso-values, from a 99 time-
step volume dataset. After lossless compression
using Z-lib, the sizes of the compressed meshes
vary widely between 0.5MB and 3.8MB. Applica-
tion 3 and 4 are tested at 1 request/second and 3 re-
quests/second, respectively. User varies the time in-
dex over iso-value with a 2-to-1 probability.

5.3 Optimizing inCache

5.3.1 Optimizing Fetch Time by Experiments

By experimenting with real-world applications in real-
world scenarios, we tried to verify the effectiveness of
numerical minimization. An initial cache configuration
is chosen when each application is started. We then rely
on either Steepest Descent or Conjugate Gradient to deter-
mine how to vary the configuration in the next iteration.

We note here that different types of cache configura-
tion parameters may have drastically different scales. For
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instance, cache size could range from Kilobytes to Giga-
bytes, while Pinc (size of prefetch) of each index used by
the dataset may only be of small values like 1, 2, 3, etc.
Hence, when Steepest Descent and Conjugate Gradient
try to evaluate various gradients, we have to use step sizes
empirically determined for each parameter in considera-
tion. For instance, the step size for “cache size” is always
10% of the previous size. Deletion size is given in terms
of number of incrementals. The step size of deletion is
also a percentage of the maximum number of incremen-
tals the current configuration could contain.

While deciding the initial configuration, we do have
one condition to always meet. That is the initial cache size
must be large enough to hold at least one half of the en-
tire prefetch neighborhood for that cache. We also do not
allow Pinc values to go beyond 6. Typically, remote vi-
sualization datasets are indexed by multiple (more than 3)
indices, and with Pinc= 6 the neighborhood for prefetch
is already exponentially sized.

As we will show in Section 6, both methods of numeri-
cal minimization worked well in finding good cache con-
figurations. However, their shortcomings are also signif-
icant. In either, before taking the next step, one needs to
make a large number of trial configurations, each with an
orthogonal change from the current one. Under a con-
figuration, to obtain a reliable measure of average fetch
time, we run through a randomly generated sequence of
user movements. Even when only dealing with 10 param-
eters (N = 10), for instance, Steepest Descent may require
hours to just take one step in experiment. An optimization
experiment could take more than a day to finish.

To resolve this bottleneck, we have developed a highly
efficient simulation based approach to carry out the op-
timization. This approach allows an optimization to be
computed within a second of time using just one CPU.

5.3.2 Optimizing Fetch Time by Simulation

To address the experimental bottleneck, we provide a sim-
ulation of the inCache infrastructure that calculates fetch
times based on average network measurements.

We start by collecting transfer times, or bandwidth,
over the wide-area network for a range of message sizes.
This test is run on every link on our targeted network con-
nection. The measured network bandwidths can then be
plotted as a function of message size for each link. We
found that the wide-area network demonstrates stable per-
formance over a reasonable time span.

When a configuration is chosen, the same random se-
quence of user movements is considered, with the over-
all operation of the inCache system simulated. The fetch
time of each network message, however, is obtained sim-

Table 2. Request Rates by the Client per Second.

App 1 App 2 App 3 App 4

Avg Inc. Size 2.4 KB 85 KB 1.8 MB 1.8 MB

Req. Rates 30/s 3/s 1/s 3/s

Requested Data 72KB/s 255KB/s 1.8MB/s 5.4MB/s

ply by linear interpolation according to message sizes
from the model obtained above. The final fetch times used
by numerical minimization are still computed as an aver-
age over the entire sequence of user movements. This
way, the most time consuming step during the optimiza-
tion process is replaced by efficient computations.

The shortcoming of our approach stems from the diffi-
culty of handling fluctuating networks and quickly chang-
ing rates of user movements. Fortunately, because of the
speed of the simulation, it is reasonable to rerun the opti-
mization at any time and reconfigure the cache configura-
tions at run-time. Also, the simulation takes as input the
estimated amount of time between user requests, which
also allows for a rerun and reconfigure. The results of
this simulation (provided in Section 6) are quite similar to
those of the experiments.

6 RESULTS AND DISCUSSIONS

6.1 Evaluation of Optimized Performance

Since our main approach is to minimize average fetch
time, let us first evaluate the resulting performance after
optimization. In Table 2, we list the request rates and av-
erage fetch sizes for Applications 1 through 4. It is impor-
tant to note that different settings of prefetch would cause
a different amount of network traffic betweenL1 andL2,
andL2 and the server. Here we are solely concerned with
the link betweenL1 cache and the client, where there is
always only one incremental returned for each request.

As described in Sections 5.3.1 and 5.3.2, there is not
a clear winner between the two alternative methods of
numerical minimization, Steepest Descent and Conjugate
Gradient. However, since the simulation consistently
completes with sub-second efficiency, we can always af-
ford to run both methods and choose the better conver-
gence result. We then set up an actual experiment using
the resulting configuration and record the average fetch
time by running through the scripted sequence of user
movements. From that, we compute the rate at which re-
quests are fulfilled. Note that this shows the performance
perceived by the client. Several interesting features can
be observed in Figure 6, a graphical plot of this result.

First, intuitively, the more data requested per second by
the client, the slower the requests can be answered. The
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Fig. 6. Evaluation of performance after optimization. The horizontal axis
is the rate at which the client requests data (in KB/second), while the
vertical axis shows the corresponding actual rates at which the system
can fulfill client requests (in number of requests/second). On each curve
(for each layout), from left to right, are Applications 1 through 4.

curves essentially depict the lower bound of achievable
latencies for each network layout with the given combi-
nation of fetch size and user request rate, i.e. the lower
bounds are specific to the pattern of data movement. From
a lower bound, we can tell whether an algorithm is appro-
priate in a scenario. In the scenarios in Figure 6, Layout 1
likely supports interactivity for all four test applications.

Second, Layout 1 and 2 performed considerably better
when the rate of data requests are on the order of sev-
eral hundred KBs/second or lower. But when rate of data
requests go up to 1.8 MB/second, only Layout 1 main-
tained better performance. This difference among lay-
outs almost completely diminishes when data is requested
at 5.4MB/second. We can thus deduce that having two
caching nodes residing on opposite ends of the slowest
link of the network would be most helpful to remove the
performance bottleneck. For instance, in Layout 1, the
slowest link is the WAN betweenL1 andL2 caches, while
the LAN connections on either the server or the client side
are not the bottleneck. Of course, when the data requests
go up to 5.4MB/second, even the LAN connections start
to get congested.

For the applications tested, the wireless network only
delivered about half of the performance that LAN en-
vironments did. This is probably because wireless net-
works are more easily saturated. But after data request
increases so much that all links become saturated, the im-
pacts caused by differences among ethernet LAN, wire-
less and WAN are then minor.

Layout 3 and Layout 4 are also different, yet they have
similar results in nearly every application. With Layout 3,

the cost of using the slower wireless network must be paid
for every request, including hits, since theL1 cache is lo-
cated across the LAN. However, Layout 4 hasL1 directly
on the client, with near instant hits onL1 but a higher cost
of misses and network transfer for prefetch requests made
by L1. As discovered by our optimizer, neither trade-off
seems to provide a better layout since the lower bounds of
fetch time are nearly the same.

On the one hand, an interactive application must at
least maintain 10-15 frames/second according to current
standards. In this context, we find Layout 1 and 2 suf-
ficient for all 4 applications to be interactive as long as
the client needs less than 500 KB/second of data. On
the other hand, some ingenious remote visualization algo-
rithms might only need a new update every 2 seconds, for
instance. Then, with sufficient caching, even the wireless
network supports interactive remote visualization, as long
as data requests are slower than 5.4MB/second. Note, in
Figure 6, even the lowest data point corresponds to an
ability to fulfill 1 request every 2 seconds. From similar
analyses, a guidance of which network layout to choose
or what algorithm to use can be obtained.

The applications we tested represent a generic spectrum
of common visualization applications. To set up the test-
ing framework, very little work was needed. We finished
developing each application within a couple of days due to
the simplistic API of the inCache infrastructure. It should
be relatively easy for other mature visualization applica-
tions to adopt our approach.

We realize it is hard to prove that our approach actu-
ally finds the optimum. However, since the performance
results are quite close to what a dynamic application can
obtain from today’s network infrastructure, we deem the
resulting performance to be close to optimal.

6.2 General Observations

In total, because of the two minimization methods, both
in experiments and simulation, and in all the 16 combi-
nations of network layout and testing applications, we al-
ready have 64 different scenarios without counting addi-
tional test runs to cross-check experiments versus simula-
tion. Due to space limits, we cannot include detailed con-
figuration results of the optimization process for all the
tests. We have compiled that information as supplemental
material to this paper.

In this section, we discuss some general findings that
we made by analyzing the cache configurations resulting
from optimization. These findings are unexpected, and
may be specific to various scenarios (i.e. the combination
of application and system settings). We present these find-
ings to demonstrate the advantages of runtime optimiza-
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Table 3. Some statistics of cache sizes (MB)

App 1 App 2 App 3 App 4

Min 0.031 1.7 51.5 7.1

Max 0.45 15.0 234.9 214.7

Average 0.28 5.4 129.9 55.4

tion from perspectives different from those in Section 6.1.
Let us also briefly describe typical parameter values

observed during optimization as a basis of reference for
phrases like “small prefetch” or “mid-range cache size”.
Our applications are data intensive. It is quite common
for at least one of the Pinc dimensions to be zeroed out
during optimization. We consider a small prefetch to be
Pinc< 2. Pinc> 4 almost always leads to inferior fetch
times. In Table 3, we collected the minimum, maximum,
and average cache sizes (without distinguishingL1 and
L2), after optimization via experiment and simulation, for
each application. Obviously, mid-range cache size is ap-
plication dependent by nature.

6.2.1 Impacts of User Interaction Rate

User request rate is probably more important than previ-
ously anticipated. Due considerations must be given to
the targeted user request rates to design algorithms and
systems with real world applicability.

If, when prefetch is costly, the user does not leave
sufficient time between requests to allow for prefetch,
prefetching could quickly become a burden. For instance,
in Application 1, at 30 requests/second the optimized
cache configurations use minimal cache prefetching, even
when each incremental is of a mere 2.4 KB. With Appli-
cation 4, a lower request rate (3 requests/second) is used,
and each of its incrementals takes about 0.1 seconds to
transfer across the WAN. A medium Pinc value of four
for each of the two indices would cause(2×4+1)2 = 81
incrementals to be prefetched together. Then, prefetch be-
comes a wasteful “post-fetch”.

Similarly, unless slow rates of data requests are used,
the system benefits less from prefetching across the WAN
than across a LAN (i.e. high vs. low prefetch costs).
Often theL2 cache, when close to the server node, can
take advantage of some prefetching to improveL1 misses.
Such behavior is consistently reproducible in both experi-
ment and simulation. This finding justifies the superiority
of latency hiding algorithms. By separating user interac-
tion rates from rates of data requests, a slower rate of data
requests is possible and leads to better performance.

Applications 3 and 4 serve as latency hiding examples.
When a surface mesh is requested at 3 requests/second
(Application 4), high fetch times are shown to occur.

Fig. 7. The legend for Figures 8 and 9.

Since mesh rendering is fully interactive by itself, we slow
to 1 request/second in Application 3. Fetch times were re-
duced dramatically because the cache was able to utilize
the “idle time” for more prefetch on bothL1 andL2. In
contrast, the optimizer used very small prefetch in Appli-
cation 4 to compensate for the higher request rate.

6.2.2 Impacts of Network Speeds and Incremental
Sizes

Network speeds have the expected effect on fetch times,
i.e. the lower the network bandwidth the longer the
fetch times. Similarly, larger incremental sizes result in
longer fetch times. For datasets with uniform incremental
sizes, cache optimizations are more consistent and pre-
dictable. However, we discovered with Applications 3
and 4, whose incremental (isosurface) sizes vary signifi-
cantly for different iso-values, that fetch times can widely
vary depending on which incremental is under request. A
small change inKeyvalue can lead to a substantial jump
in resulting fetch time. This makes optimization difficult.
One way to overcome the problem is to continuously op-
timize inCache as the user interacts with the visualization.
This is why we have used the sequence based user model.

Also, a portable client placed on a wireless device ben-
efits from the inCache system. The greatest increase in
performance occurred when the clients were able to ac-
cess a large portion of data on a local network, i.e. when
bothL1 andL2 cache nodes appeared on the same LAN as
the client.L2 acted as a larger storage unit, allowing even
L1 cache misses to incur a small penalty.

6.3 Experiments vs. Simulation

Here we present plots of the resulting average fetch time,
measured in different cases, to demonstrate the intrinsics
of the optimization process. Together, these plots are a
summary of the supplemental material of this paper.

Each graph in Figures 8 and 9 represents one Applica-
tion over the 4 different layouts (Layout 1-4). For each,
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Fig. 8. Latencies measured in Applications 1 (top) and 2 (bottom).

we compare two optimization methods and experiment vs.
simulation. For each application the same initial cache
configuration is used.

For some tests, there is such a large range of initial
fetch times and resulting optimized times that the maxi-
mum fetch time value allowed for the Y axis had to be
capped to produce sensible plots. In that case, all values
above the maximum range of the graph are shown in print
on the graphs. With every combination of testing applica-
tion and network layout, results from both the actual ex-
periments and different methods of simulation are shown.
Specifically, the legend is organized as Figure 7, with the
graphs shown in Figures 8 and 9.

Our simulation calculates fetch times based on mea-
sured network bandwidth, greatly accelerating the pro-
cess. For instance, both an hour long streamline exper-
iment and a two hour long vortex experiment can be sim-
ulated in seconds. A four hour long isosurface test is sim-
ulated even faster because there are only two Pinc dimen-
sions for isosurfaces, even though isosurfaces are much
larger and more expensive to actually transfer. In all tests,
simulation and experiment results are compared.

Although we have tested and found high stability on all
the non-wireless networks we use (WAN and LAN), our
simulation runs are likely biased. Nevertheless, as seen in
the four graphs of all runs, even though the optimized con-

Fig. 9. Latencies measured in Applications 3 (top) and 4 (bottom).

figurations from simulation and experiments differ, the re-
sulting fetch times are similar. However, the similarity is
greatly affected by network instability and varying incre-
mental sizes, as in Application 3. We ran the inCache
system under all of the suggested outputs and the result-
ing fetch times were near the estimates, and, therefore,
near the fetch times of the experimental runs. Unfortu-
nately, the effect of network-related noise becomes quite
apparent whenever a network layout includes a wireless
network, which is notoriously sporadic. With the wireless
network, our optimizer was still able to obtain a perfor-
mance corresponding to roughly half of that delivered by
non-wireless network.

6.4 Sensitivity to Initial Configuration

Due to space limits, we cannot provide in this paper a
comprehensive sensitivity study of all the 64 testing sce-
narios in Figures 8 and 9. However, we believe our frame-
work is reasonably insensitive to how initial configura-
tions are seeded.

First, we chose the worst 10 configurations from the
same set of 200 configurations tested in Section 4.2. The
latencies recorded in those 10 configurations range from
36 to 53 seconds/request. All 10 configurations typically
employ very large prefetch sizes. We optimize those con-
figurations by simulation, using both Steepest Descent
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and Conjugate Gradient as the minimizer. By choosing
the better result from the two minimizers, the optimized
latency falls in the range of[0.8,4.2] seconds/request,
with the mean being 2.6 seconds/request. Although we
did not achieve as good of a result as in Section 6.1, we
still obtained substantial improvements.

Second, for tests in Figures 8 and 9, each applica-
tion starts from the same initial configuration, and in all
cases consistent performance gains have been obtained af-
ter convergence. Since too much prefetch may very well
be harmful, it may be practical to always start from ini-
tial configurations like the ones we used, where a small
prefetch (e.g. Pinc = 1) is coupled with a mid-range
cache size. Another practical strategy is to leverage the
efficiency of our simulation. One can always start from
a handful of reasonable initial conditions and choose the
best among all the converged results, like how quicksort
uses median-of-three to choose pivot.

7 CONCLUSION AND FUTURE WORK

In this work, we focused on optimizing caching and
prefetching in remote visualization systems. By way of
real-world experiment and computer simulation, we have
developed an approach, as well as an infrastructure, to
seek close to optimal cache configurations maximizing
network utilization. We envision several ways that our
work could be leveraged. A developer can gauge whether
a certain user requirement is realistic by the use of our
simulation modules. An administrator can use our ap-
proach to determine more optimized layout for a system,
and also dynamically re-configure cache nodes on the fly
to maintain high performance.

In the future, we would like to develop a more compre-
hensive sensitivity analysis in a separate work. In addi-
tion, we intend to evaluate other optimization techniques.
We also hope to explore using real user movement se-
quences captured from actual inputs by human subjects
to better validate our approach.
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